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Question
This question is concerned with the oscillations of a single particle, mass m, mov-

ing on a smooth horizontal table under the influence of two or more perfect springs.
Each spring obeys Hooke’s law with stiffness k and has natural length l0. In all dia-
grams the system is in its equilibrium position.

For the system comprising just one spring with motion in the direction x, as shown
in figure 1,

Figure 1: Single spring-mass system.

the period, τ , is, in terms of k and m, given by

τ = 2π

√
m

k
.

In the following parts you are asked to obtain the appropriate period, τi, in the form

τi = λiτ.

In each case the equilibrium position is defined by the length L with L > l0.

(i) Consider the system with two springs as shown in figure 2.

Figure 2: System with two springs along direction of motion.

Find the value of λ1.

[ 2 marks ]

For the remaining parts you should consider small amplitude oscillations in the
appropriate direction x, i.e. |x|/L << 1. You may find it convenient to write
X = x/L and evaluate distances correct to first order in X, i.e. ignore terms
X2 and higher, and then write down the appropriate equation of motion.
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(ii) This part involves two springs as shown in figure 3.

Figure 3: System with two springs perpendicular to direction of motion.

Find the value of λ2.

[ 3 marks ]

(iii) You may find the result in this section to be of help in sections (iv) and (v).

Figure 4: (a) Definition of l1, l2, α and β; (b) forces F1 and F2.

The situation shown in figure 4(a) shows a point, P, a small distance, x, from
the point E. Show:
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Either

l1 = L (1 +X cos θ) +O(X2) and cosα = cos θ +X
(
1− cos2 θ

)
+O(X2).

Or

l2 = L (1−X cos θ) +O(X2) and cos β = cos θ +X
(
cos2 θ − 1

)
+O(X2).

Suppose that we have a symmetric system of springs such that the motion is
always along the direction x as shown in figure 4. Two such springs are shown
in figures 4(a) and (b).

Using the results above, show that the magnitude of the force in each spring is
given, to first order, by

F1 = F2 = kx cos θ

and that the tension force, F1, and the compression force, F2, yield a combined,
first order, component in the x-direction

−2kx cos2 θ.

[ 2 marks ]

(iv) This part involves four springs along the diagonals of a square, ABCD, as shown
in figure 5.

Figure 5: System with four springs along the diagonals of a square.

Find the value of λ3.

[2 marks ]
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Figure 6: System with six springs in a regular hexagon.

(v) This final part involves six springs arranged in a regular hexagonal form, ABCDEF,
as shown in figure 6.

Find the value of λ4.

[ 1 mark ]

[ Total 10 marks ]
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Solution
Either:

(A) Using Newton’s second law

(i) (2 marks) In figure 7 the displacement, x, is measured relative to the equi-
librium position xe. The forces, F1 and F2, are the forces above and beyond
the equilibrium values1. It is these forces which give rise to the periodic
motion.

Figure 7: Particle P relative to the equilibrium position xe.

Newton’s second law gives

mẍ = −F1 + F2.

Now in the configuration shown in figure 7, F1 is a tension and F2 is a
compression. Hence Hooke’s law gives

F1 = kx and F2 = −kx.

It follows that the equation of motion is

mẍ = −2kx

or

ẍ = −ω1
2x, where ω1

2 =
2k

m
,

giving

τ1 = 2π

√
m

2k

and consequently

λ1 =
1√
2
.

[ 2 marks ]

1Suppose that the forces are written F1
total = F1

eq + F1 and F2
total = F2

eq + F2.
Newtons’ second law gives −F1

total + F2
total = mẍ.

Since −F1
eq + F2

eq = 0 it follows that mẍ = −F1 + F2.
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(ii) (3 marks) With X = x/L consider the two spring set up displaced a small
distance x as shown in figure 8. Here |X| << 1 and we see that

AP = BP = L
√
1 +X2.

It follows then that

AP = BP = L

(
1 +

X2

2
+O(X4)

)
and

F1 = F2 ≈ k

[
L

(
1 +

X2

2

)
− l0

]
.

Figure 8: System with two springs perpendicular to direction of motion.

It follows that the tensions in each spring are, to first order,

F1 = F2 = k (L− l0) ,

the equilibrium tension.

From figure 8 we see that cosα = X/
√
1 +X2 = X, to first order.

Newton’s second law gives

mẍ = −F1 cosα− F2 cosα

which we can write, to first order, as

mẌ = −2k

(
1− l0

L

)
X
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i.e.

Ẍ = −ω2
2X, where ω2

2 =
2k

m

(
1− l0

L

)
,

giving

τ2 = 2π

√
m

2k
(
1− l0

L

)
and consequently

λ2 =

√
1

2
(
1− l0

L

) .
[3 marks ]

(iii) Either
(2 marks) Using the cosine rule on triangle EPB, figure 4

l1 =
√
L2 + x2 + 2Lx cos θ

= L
(
1 + 2X cos θ +X2

)1/2
= L (1 +X cos θ) +O(X2).

Also, we can see that

cosα =
L cos θ + x

l1
= (cos θ +X) (1 +X cos θ)−1

= cos θ +X
(
1− cos2 θ

)
+O(X2).

Or
Similarly, using the cosine rule on triangle EPA, figure 4

l2 =
√
L2 + x2 − 2Lx cos θ

= L
(
1− 2X cos θ +X2

)1/2
= L (1−X cos θ) +O(X2).

Also, we can see that

cos β =
L cos θ − x

l2
= (cos θ −X) (1−X cos θ)−1

= cos θ +X
(
cos2 θ − 1

)
+O(X2).

[ 2 marks ]
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Figure 9: System with four springs.

(iv) (2 marks) By symmetry, CP = DP = l1 and the forces in the springs spring
are equal (tensions F1). Similarly for BP and AP (length l2 and compres-
sions F2), see figure 9. With X = x/L consider the four spring set up
displaced a small distance x as shown in the figure. Here |X| << 1.

Using the notation of figure 4

θ = π/4

and, using the results of part (iii), the total force over and above equilibrium
value is given by

2
(
−2kx cos2

(π
4

))
= −2kx.

Newton’s second law then gives

mẍ = −2kx

so that

τ3 = 2π

√
m

2k

and

λ3 =
1√
2
.

(v) (1 mark) In this case we have, in terms of notation of figure 4, two springs
with θ = 0, and four with θ = π/3 so that using the result of part (iii) the
total force over and above equilibrium value is given by

−2kx+ 2
(
−2kx cos2

(π
3

))
= −3kx

Newton’s second law then gives

mẍ = −3kx

8



so that

τ4 = 2π

√
m

3k

and

λ4 =
1√
3
.

Or:

(B) Using conservation of energy

(i) From figures 2 and 7 we can obtain the potential energy as

1

2
k (L+ x− l0)

2 +
1

2
k (L− x− l0)

2

and conservation of energy yields

1

2
mẋ2 +

1

2
k (L+ x− l0)

2 +
1

2
k (L− x− l0)

2 = constant.

Differentiate with respect to t

mẍẋ+ k (L+ x− l0) ẋ+ k (L− x− l0) ẋ = 0.

Dividing by ẋ gives
mẍ = −2kx,

leading to

λ1 =
1√
2

as before.

[ 2 marks ]

(ii) From figures 3 and 8 we can obtain the potential energy as

2.1
2
k
(√

L2 + x2 − l0

)2

and conservation of energy yields

1

2
mẋ2 + k

(
L2 + x2 + l20 − 2l0

(
L2 + x2

) 1
2

)
= constant.

Differentiate with respect to t

mẍẋ+ 2kxẋ− 2kl0
1
2

2xẋ

(L2 + x2)
1
2

= 0
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which we acn write as, after division by ẋ

mẍ+ 2kx− 2k
l0
L
x

(
1 +

1

2
X2 +O(X4)

)
= 0

and so, to first order

mẍ = −2k

(
1− l0

L

)
x

giving

λ2 =

√
1

2
(
1− l0

L

)
as before.

[3 marks ]

(iii) This part requires a purely geometric approach and so conservation of en-
ergy is not appropriate.

(iv) and (v)
These two parts can be done using conservation of energy, however it re-
quires a very large amount of tedious algebra and it is not shown here.
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